Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
1.
Sci Rep ; 14(1): 8073, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580653

RESUMO

The fishing cat, Prionailurus viverrinus, faces a population decline, increasing the importance of maintaining healthy zoo populations. Unfortunately, zoo-managed individuals currently face a high prevalence of transitional cell carcinoma (TCC), a form of bladder cancer. To investigate the genetics of inherited diseases among captive fishing cats, we present a chromosome-scale assembly, generate the pedigree of the zoo-managed population, reaffirm the close genetic relationship with the Asian leopard cat (Prionailurus bengalensis), and identify 7.4 million single nucleotide variants (SNVs) and 23,432 structural variants (SVs) from whole genome sequencing (WGS) data of healthy and TCC cats. Only BRCA2 was found to have a high recurrent number of missense mutations in fishing cats diagnosed with TCC when compared to inherited human cancer risk variants. These new fishing cat genomic resources will aid conservation efforts to improve their genetic fitness and enhance the comparative study of feline genomes.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Gatos , Animais , Humanos , Genoma/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/patologia , Genômica , Células Germinativas/patologia
2.
Stem Cells ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597671

RESUMO

Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their clinical application remains challenging due to issues such as immunocompatibility. MSC-derived exosomes are a promising off-the-shelf therapy for promoting wound healing in a cell-free manner. However, the potential to customize the content of MSC-exosomes, and understanding how such modifications influence exosome effects on tissue regeneration remain underexplored. In this study, we used an in vitro system to compare the priming of human MSCs by two inflammatory inducers TNF-α and CRX-527 (a highly potent synthetic TLR4 agonist that can be used as a vaccine adjuvant or to induce anti-tumor immunity) on exosome molecular cargo, as well as on an in vivo rat ligament injury model to validate exosome potency. Different microenvironmental stimuli used to prime MSCs in vitro affected their exosomal microRNAs and mRNAs, influencing ligament healing. Exosomes derived from untreated MSCs significantly enhance the mechanical properties of healing ligaments, in contrast to those obtained from MSCs primed with inflammation-inducers, which not only fail to provide any improvement but also potentially deteriorate the mechanical properties. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration.

3.
J Immunother Cancer ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631708

RESUMO

BACKGROUND: Natural killer (NK) cells are cytotoxic cells capable of recognizing heterogeneous cancer targets without prior sensitization, making them promising prospects for use in cellular immunotherapy. Companion dogs develop spontaneous cancers in the context of an intact immune system, representing a valid cancer immunotherapy model. Previously, CD5 depletion of peripheral blood mononuclear cells (PBMCs) was used in dogs to isolate a CD5dim-expressing NK subset prior to co-culture with an irradiated feeder line, but this can limit the yield of the final NK product. This study aimed to assess NK activation, expansion, and preliminary clinical activity in first-in-dog clinical trials using a novel system with unmanipulated PBMCs to generate our NK cell product. METHODS: Starting populations of CD5-depleted cells and PBMCs from healthy beagle donors were co-cultured for 14 days, phenotype, cytotoxicity, and cytokine secretion were measured, and samples were sequenced using the 3'-Tag-RNA-Seq protocol. Co-cultured human PBMCs and NK-isolated cells were also sequenced for comparative analysis. In addition, two first-in-dog clinical trials were performed in dogs with melanoma and osteosarcoma using autologous and allogeneic NK cells, respectively, to establish safety and proof-of-concept of this manufacturing approach. RESULTS: Calculated cell counts, viability, killing, and cytokine secretion were equivalent or higher in expanded NK cells from canine PBMCs versus CD5-depleted cells, and immune phenotyping confirmed a CD3-NKp46+ product from PBMC-expanded cells at day 14. Transcriptomic analysis of expanded cell populations confirmed upregulation of NK activation genes and related pathways, and human NK cells using well-characterized NK markers closely mirrored canine gene expression patterns. Autologous and allogeneic PBMC-derived NK cells were successfully expanded for use in first-in-dog clinical trials, resulting in no serious adverse events and preliminary efficacy data. RNA sequencing of PBMCs from dogs receiving allogeneic NK transfer showed patient-unique gene signatures with NK gene expression trends in response to treatment. CONCLUSIONS: Overall, the use of unmanipulated PBMCs appears safe and potentially effective for canine NK immunotherapy with equivalent to superior results to CD5 depletion in NK expansion, activation, and cytotoxicity. Our preclinical and clinical data support further evaluation of this technique as a novel platform for optimizing NK immunotherapy in dogs.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Cães , Animais , Humanos , Imunoterapia Adotiva , Leucócitos Mononucleares , Citotoxicidade Imunológica , Células Matadoras Naturais , Osteossarcoma/veterinária , Neoplasias Ósseas/metabolismo , Citocinas/metabolismo
4.
Front Surg ; 11: 1338209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638142

RESUMO

Background: Adhesion formation, sinus ostial narrowing, and presence of pathogenic bacteria are associated with poor outcomes following endoscopic sinus surgery (ESS) for chronic rhinosinusitis. Chitogel has been shown to improve wound healing, restore a healthier microbiome, and reduce post-operative infections post ESS. Deferiprone has antibacterial properties and has been shown to reduce adhesion formation. The aim of the study was to assess whether the addition of low concentration deferiprone to Chitogel further improves surgical outcomes following ESS compared with Chitogel alone. Methods: In this double-blinded trial, 45 patients undergoing ESS were prospectively recruited. At the end of the surgery, patients were randomised to receive Chitogel alone, Chitogel with 1 mM of deferiprone, or Chitogel with 5 mM of deferiprone to one side of the sinuses (allowing the other side to serve as control). Patients underwent routine follow-ups with symptom questionnaires and nasoendoscopies performed at 2, 6, and 12 weeks post-operatively. Sinus ostial measurements, microbiology, and microbiome swabs from bilateral middle meatuses were collected intraoperatively and at 12 weeks post-operatively. Results: A significant improvement in the endoscopic appearance of the sinuses and frontal ostial patency was noted at 12 weeks post-operatively (p < 0.05) in all three treatment groups compared with the control. There was no significant difference noted between patients who received Chitogel alone and those who received Chitogel with 1 or 5 mM deferiprone. Conclusion: Chitogel alone, Chitogel with 1 mM deferiprone, and Chitogel with 5 mM deferiprone used following ESS led to a significant improvement in endoscopic appearance of the sinuses and frontal ostial preservation at 12 weeks post-operatively. No significant difference was found with the addition of deferiprone to Chitogel.

5.
J Biomed Mater Res A ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530161

RESUMO

The ability to locally deliver bioactive molecules to distinct regions of the skeleton may provide a novel means by which to improve fracture healing, treat neoplasms or infections, or modulate growth. In this study, we constructed single-sided mineral-coated poly-ε-caprolactone membranes capable of binding and releasing transforming growth factor beta 1 (TGF-ß1) and human growth hormone (hGH). After demonstrating biological activity in vitro and characterization of their release, these thin bioabsorbable membranes were surgically implanted using an immature rabbit model. Membranes were circumferentially wrapped under the periosteum, thus placed in direct contact with the proximal metaphysis to assess its bioactivity in vivo. The direct effects on the metaphyseal bone, bone marrow, and overlying periosteum were assessed using radiography and histology. Effects of membrane placement at the tibial growth plate were assessed via physeal heights, tibial growth rates (pulsed fluorochrome labeling), and tibial lengths. Subperiosteal placement of the mineralized membranes induced greater local chondrogenesis in the plain mineral and TGF-ß1 samples than the hGH. More exuberant and circumferential ossification was seen in the TGF-ß1 treated tibiae. The TGF-ß1 membranes also induced hypocellularity of the bone marrow with characteristics of gelatinous degeneration not seen in the other groups. While the proximal tibial growth plates were taller in the hGH treated than TGF-ß1, no differences in growth rates or overall tibial lengths were found. In conclusion, these data demonstrate the feasibility of using bioabsorbable mineral coated membranes to deliver biologically active compounds subperiosteally in a sustained fashion to affect cells at the insertion site, bone marrow, and even growth plate.

6.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542309

RESUMO

Chronic rhinosinusitis (CRS) is characterized by sinonasal mucosal inflammation. Staphylococcus aureus (S. aureus) is associated with severe CRS phenotypes. Different animal models have been proposed to study the association of CRS and S. aureus. However, current animal models are expensive due to the use of large animals, have high barriers to ethics approval, or require invasive surgical intervention, necessitating a need for a model that can overcome these limitations. This study aimed at establishing a reliable and efficient rat lymphoplasmacytic inflammatory model for rhinosinusitis. Sprague Dawley rats received a daily intranasal application of 20 µL of saline, S. aureus CI-182 exoprotein (250 µg/mL), or exoprotein CI-182 in combination with S. aureus clinical isolate (CI-908 or CI-913) 108 colony-forming unit (CFU)/mL. The rats' sinuses were harvested at 1 and 2 weeks post-intervention. The CFU and histopathologic examination of inflammation were evaluated. S. aureus clinical isolates CI-908 or CI-913 in combination with the exoprotein (CI-182) had higher CFUs and caused persistently higher inflammation at both the 1 and 2-week post-intervention compared to the exoprotein and saline group. The observed inflammatory cell type was lymphoplasmacytic. This study provided evidence that the combination of a S. aureus exoprotein with S. aureus induces inflammation that persists for a minimum of two weeks post-intervention. This model is the first known animal model to create the lymphoplasmacytic inflammation subtype seen in CRS patients. This offers a cost-effective, accessible, non-invasive, and easy-to-replicate model to study the causes and treatment of such inflammation.


Assuntos
Rinite , 60523 , Sinusite , Infecções Estafilocócicas , Humanos , Ratos , Animais , Staphylococcus aureus , Rinite/complicações , Ratos Sprague-Dawley , Sinusite/complicações , Inflamação/complicações , Infecções Estafilocócicas/tratamento farmacológico , Solução Salina , Doença Crônica
7.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542325

RESUMO

The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.


Assuntos
Sarcoma , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Sorafenibe/metabolismo , Aldeído Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Sarcoma/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
8.
Front Immunol ; 15: 1345499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469293

RESUMO

Immune responses to both SARS-CoV-2 infection and its associated vaccines have been highly variable within the general population. The increasing evidence of long-lasting symptoms after resolution of infection, called post-acute sequelae of COVID-19 (PASC) or "Long COVID," suggests that immune-mediated mechanisms are at play. Closely related endemic common human coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive immunity, which can then affect primary SARS-CoV-2 infection, as well as vaccination responses. The influence of pre-existing immunity from these hCoVs, as well as responses generated from original CoV2 strains or vaccines on the development of new high-affinity responses to CoV2 antigenic viral variants, needs to be better understood given the need for continuous vaccine adaptation and application in the population. Due in part to thymic involution, normal aging is associated with reduced naïve T cell compartments and impaired primary antigen responsiveness, resulting in a reliance on the pre-existing cross-reactive memory cell pool which may be of lower affinity, restricted in diversity, or of shorter duration. These effects can also be mediated by the presence of down-regulatory anti-idiotype responses which also increase in aging. Given the tremendous heterogeneity of clinical data, utilization of preclinical models offers the greatest ability to assess immune responses under a controlled setting. These models should now involve prior antigen/viral exposure combined with incorporation of modifying factors such as age on immune responses and effects. This will also allow for mechanistic dissection and understanding of the different immune pathways involved in both SARS-CoV-2 pathogen and potential vaccine responses over time and how pre-existing memory responses, including potential anti-idiotype responses, can affect efficacy as well as potential off-target effects in different tissues as well as modeling PASC.


Assuntos
COVID-19 , Vacinas , Humanos , Síndrome Pós-COVID-19 Aguda , SARS-CoV-2 , Envelhecimento , Idiótipos de Imunoglobulinas
9.
Curr Biol ; 34(7): 1506-1518.e7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531359

RESUMO

The Bengal cat breed was developed from intercrosses between the Asian leopard cat, Prionailurus bengalensis, and the domestic cat, Felis catus, with a last common ancestor approximately 6 million years ago. Predicted to derive ∼94% of their genome from domestic cats, regions of the leopard cat genome are thought to account for the unique pelage traits and ornate color patterns of the Bengal breed, which are similar to those of ocelots and jaguars. We explore ancestry distribution and selection signatures in the Bengal breed by using reduced representation and whole-genome sequencing from 947 cats. The mean proportion of leopard cat DNA in the Bengal breed is 3.48%, lower than predicted from breed history, and is broadly distributed, covering 93% of the Bengal genome. Overall, leopard cat introgressions do not show strong signatures of selection across the Bengal breed. However, two popular color traits in Bengal cats, charcoal and pheomelanin intensity, are explained by selection of leopard cat genes whose expression is reduced in a domestic cat background, consistent with genetic incompatibility resulting from hybridization. We characterize several selective sweeps in the Bengal genome that harbor candidate genes for pelage and color pattern and that are associated with domestic, rather than leopard, cat haplotypes. We identify the molecular and phenotypic basis of one selective sweep as reduced expression of the Fgfr2 gene, which underlies glitter, a trait desired by breeders that affects hair texture and light reflectivity.


Assuntos
Panthera , Gatos/genética , Animais , Haplótipos , Fenótipo
10.
JAMA Dermatol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452263

RESUMO

Importance: With advancements in mobile technology and artificial intelligence (AI) methods, there has been a substantial surge in the availability of direct-to-consumer mobile applications (apps) claiming to aid in the assessment and management of diverse skin conditions. Despite widespread patient downloads, these apps exhibit limited evidence supporting their efficacy. Objective: To identify and characterize current English-language AI dermatology mobile apps available for download, focusing on aspects such as purpose, supporting evidence, regulatory status, clinician input, data privacy measures, and use of image data. Evidence Review: In this scoping review, both Apple and Android mobile app stores were systematically searched for dermatology-related apps that use AI algorithms. Each app's purpose, target audience, evidence-based claims, algorithm details, data availability, clinician input during development, and data usage privacy policies were evaluated. Findings: A total of 909 apps were initially identified. Following the removal of 518 duplicates, 391 apps remained. Subsequent review excluded 350 apps due to nonmedical nature, non-English languages, absence of AI features, or unavailability, ultimately leaving 41 apps for detailed analysis. The findings revealed several concerning aspects of the current landscape of AI apps in dermatology. Notably, none of the apps were approved by the US Food and Drug Administration, and only 2 of the apps included disclaimers for the lack of regulatory approval. Overall, the study found that these apps lack supporting evidence, input from clinicians and/or dermatologists, and transparency in algorithm development, data usage, and user privacy. Conclusions and Relevance: This scoping review determined that although AI dermatology mobile apps hold promise for improving access to care and patient outcomes, in their current state, they may pose harm due to potential risks, lack of consistent validation, and misleading user communication. Addressing challenges in efficacy, safety, and transparency through effective regulation, validation, and standardized evaluation criteria is essential to harness the benefits of these apps while minimizing risks.

12.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474043

RESUMO

Chronic rhinosinusitis (CRS) is a disease characterised by the inflammation of the nasal and paranasal cavities. It is a widespread condition with considerable morbidity for patients. Current treatment for chronic rhinosinusitis consists of appropriate medical therapy followed by surgery in medically resistant patients. Although oral steroids are effective, they are associated with significant morbidity, and disease recurrence is common when discontinued. The development of additional steroid sparing therapies is therefore needed. Mesalazine is a commonly used therapeutic in inflammatory bowel disease, which shares a similar disease profile with chronic rhinosinusitis. This exploratory in vitro study aims to investigate whether mesalazine could be repurposed to a nasal wash, which is safe on human nasoepithelial cells, and retains its anti-inflammatory effects. CRS patients' human nasal epithelial cells (HNECs) were collected. HNECs were grown at an air-liquid interface (ALIs) and in a monolayer and challenged with mesalazine or a non-medicated control. Transepithelial electrical resistance, paracellular permeability, and toxicity were measured to assess epithelial integrity and safety. The anti-inflammatory effects of mesalazine on the release of interleukin (IL)-6 and tumour necrosis factor alpha (TNF-α) were analysed using human leukemia monocytic cell line (THP-1). mesalazine did not impact the barrier function of HNEC-ALIs and was not toxic when applied to HNECs or THP-1 cells at concentrations up to 20 mM. mesalazine at 0.5 and 1 mM concentrations significantly inhibited TNF-α release by THP-1 cells. mesalazine effectively decreases TNF-α secretion from THP-1 cells, indicating the possibility of its anti-inflammatory properties. The safety profile of mesalazine at doses up to 20 mM suggests that it is safe when applied topically on HNECs.


Assuntos
Mesalamina , Sinusite , Humanos , Mesalamina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Sinusite/metabolismo , Mucosa Nasal/metabolismo , Interleucina-6/metabolismo , Anti-Inflamatórios/farmacologia , Doença Crônica , Células Epiteliais/metabolismo
13.
J Hered ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416051

RESUMO

Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding inter-specific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 Mb and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n=78. We evaluated mapping quality for previous RAD-seq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.

14.
Front Vet Sci ; 11: 1336158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379924

RESUMO

The field of cancer immunology has seen a meteoric rise in interest and application due to the discovery of immunotherapies that target immune cells, often leading to dramatic anti-tumor effects. However, successful cellular immunotherapy for solid tumors remains a challenge, and the application of immunotherapy to dogs with naturally occurring cancers has emerged as a high yield large animal model to bridge the bench-to-bedside challenges of immunotherapies, including those based on natural killer (NK) cells. Here, we review recent developments in the characterization and understanding of canine NK cells, a critical springboard for future translational NK immunotherapy research. The characterization of canine NK cells is exceptionally pertinent given the ongoing challenges in defining them and contextualizing their similarities and differences compared to human and murine NK cells compounded by the limited availability of validated canine specific reagents. Additionally, we summarize the current landscape of the clinical and translational literature employing strategies to capitalize on endogenous and exogenous NK cell immunotherapy in canine cancer patients. The insights regarding efficacy and immune correlates from these trials provide a solid foundation to design and test novel combinational therapies to enhance NK cell activity with the added benefit of motivating comparative work to translate these findings to human cancers with extensive similarities to their canine counterparts. The compilation of knowledge from basic canine NK phenotype and function to applications in first-in-dog clinical trials will support the canine cancer model and enhance translational work to improve cancer outcomes for both dogs and humans.

15.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381537

RESUMO

BACKGROUND: NAFLD is highly prevalent with limited treatment options. Bile acids (BAs) increase in the systemic circulation and liver during NAFLD progression. Changes in plasma membrane localization and zonal distribution of BA transporters can influence transport function and BA homeostasis. However, a thorough characterization of how NAFLD influences these factors is currently lacking. This study aimed to evaluate the impact of NAFLD and the accompanying histologic features on the functional capacity of key hepatocyte BA transporters across zonal regions in human liver biopsies. METHODS: A novel machine learning image classification approach was used to quantify relative zonal abundance and plasma membrane localization of BA transporters (bile salt export pump [BSEP], sodium-taurocholate cotransporting polypeptide, organic anion transporting polypeptide [OATP] 1B1 and OATP1B3) in non-diseased (n = 10), NAFL (n = 9), and NASH (n = 11) liver biopsies. Based on these data, membrane-localized zonal abundance (MZA) measures were developed to estimate transporter functional capacity. RESULTS: NAFLD diagnosis and histologic scoring were associated with changes in transporter membrane localization and zonation. Increased periportal BSEPMZA (mean proportional difference compared to non-diseased liver of 0.090) and decreased pericentral BSEPMZA (-0.065) were observed with NASH and also in biopsies with higher histologic scores. Compared to Non-diseased Liver, periportal OATP1B3MZA was increased in NAFL (0.041) and NASH (0.047). Grade 2 steatosis (mean proportional difference of 0.043 when compared to grade 0) and grade 1 lobular inflammation (0.043) were associated with increased periportal OATP1B3MZA. CONCLUSIONS: These findings provide novel mechanistic insight into specific transporter alterations that impact BA homeostasis in NAFLD. Changes in BSEPMZA likely contribute to altered BA disposition and pericentral microcholestasis previously reported in some patients with NAFLD. BSEPMZA assessment could inform future development and optimization of NASH-related pharmacotherapies.


Assuntos
Proteínas de Transporte , Glicoproteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras , Membrana Celular/metabolismo
16.
J Tissue Eng ; 15: 20417314241230633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361535

RESUMO

The tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel. Further, our 3D human tissue assembly approach occurred in an open cell culture format and created a tissue that was sufficiently translucent to allow for continuous imaging. Planar neural organoids formed on PEG hydrogels also showed higher expression of neural, vascular, and neuroinflammatory genes when compared to traditional brain organoids grown in Matrigel suspensions. Further, planar neural organoids contained functional microglia that responded to pro-inflammatory stimuli, and were responsive to anti-inflammatory drugs. These results demonstrate that the PEG hydrogel neural organoids can be used as a physiologically relevant in vitro model of neuro-inflammation.

17.
JCO Clin Cancer Inform ; 8: e2300118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181324

RESUMO

PURPOSE: Limitations from commercial software applications prevent the implementation of a robust and cost-efficient high-throughput cancer imaging radiomic feature extraction and perfusion analysis workflow. This study aimed to develop and validate a cancer research computational solution using open-source software for vendor- and sequence-neutral high-throughput image processing and feature extraction. METHODS: The Cancer Radiomic and Perfusion Imaging (CARPI) automated framework is a Python-based software application that is vendor- and sequence-neutral. CARPI uses contour files generated using an application of the user's choice and performs automated radiomic feature extraction and perfusion analysis. This workflow solution was validated using two clinical data sets, one consisted of 40 pelvic chondrosarcomas and 42 sacral chordomas with a total of 82 patients, and a second data set consisted of 26 patients with undifferentiated pleomorphic sarcoma (UPS) imaged at multiple points during presurgical treatment. RESULTS: Three hundred sixteen volumetric contour files were processed using CARPI. The application automatically extracted 107 radiomic features from multiple magnetic resonance imaging sequences and seven semiquantitative perfusion parameters from time-intensity curves. Statistically significant differences (P < .00047) were found in 18 of 107 radiomic features in chordoma versus chondrosarcoma, including six first-order and 12 high-order features. In UPS postradiation, the apparent diffusion coefficient mean increased 41% in good responders (P = .0017), while firstorder_10Percentile (P = .0312) was statistically significant between good and partial/nonresponders. CONCLUSION: The CARPI processing of two clinical validation data sets confirmed the software application's ability to differentiate between different types of tumors and help predict patient response to treatment on the basis of radiomic features. Benchmark comparison with five similar open-source solutions demonstrated the advantages of CARPI in the automated perfusion feature extraction, relational database generation, and graphic report export features, although lacking a user-friendly graphical user interface and predictive model building.


Assuntos
Neoplasias , 60570 , Humanos , Benchmarking , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador
18.
Proc Natl Acad Sci U S A ; 121(2): e2310763120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165928

RESUMO

Habitat degradation and loss of genetic diversity are common threats faced by almost all of today's wild cats. Big cats, such as tigers and lions, are of great concern and have received considerable conservation attention through policies and international actions. However, knowledge of and conservation actions for small wild cats are lagging considerably behind. The black-footed cat, Felis nigripes, one of the smallest felid species, is experiencing increasing threats with a rapid reduction in population size. However, there is a lack of genetic information to assist in developing effective conservation actions. A de novo assembly of a high-quality chromosome-level reference genome of the black-footed cat was made, and comparative genomics and population genomics analyses were carried out. These analyses revealed that the most significant genetic changes in the evolution of the black-footed cat are the rapid evolution of sensory and metabolic-related genes, reflecting genetic adaptations to its characteristic nocturnal hunting and a high metabolic rate. Genomes of the black-footed cat exhibit a high level of inbreeding, especially for signals of recent inbreeding events, which suggest that they may have experienced severe genetic isolation caused by habitat fragmentation. More importantly, inbreeding associated with two deleterious mutated genes may exacerbate the risk of amyloidosis, the dominant disease that causes mortality of about 70% of captive individuals. Our research provides comprehensive documentation of the evolutionary history of the black-footed cat and suggests that there is an urgent need to investigate genomic variations of small felids worldwide to support effective conservation actions.


Assuntos
Felidae , Felis , Leões , Humanos , Animais , Felidae/genética , Genoma , Genômica
19.
NPJ Regen Med ; 9(1): 6, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245543

RESUMO

Mesenchymal stem cells (MSCs) are novel therapeutics for the treatment of Crohn's disease. However, their mechanism of action is unclear, especially in disease-relevant chronic models of inflammation. Thus, we used SAMP-1/YitFc (SAMP), a chronic and spontaneous murine model of small intestinal inflammation, to study the therapeutic effects and mechanism of action of human bone marrow-derived MSCs (hMSC). hMSC dose-dependently inhibited naïve T lymphocyte proliferation via prostaglandin E2 (PGE2) secretion and reprogrammed macrophages to an anti-inflammatory phenotype. We found that the hMSCs promoted mucosal healing and immunologic response early after administration in SAMP when live hMSCs are present (until day 9) and resulted in a complete response characterized by mucosal, histological, immunologic, and radiological healing by day 28 when no live hMSCs are present. hMSCs mediate their effect via modulation of T cells and macrophages in the mesentery and mesenteric lymph nodes (mLN). Sc-RNAseq confirmed the anti-inflammatory phenotype of macrophages and identified macrophage efferocytosis of apoptotic hMSCs as a mechanism that explains their long-term efficacy. Taken together, our findings show that hMSCs result in healing and tissue regeneration in a chronic model of small intestinal inflammation and despite being short-lived, exert long-term effects via sustained anti-inflammatory programming of macrophages via efferocytosis.

20.
Cell Genom ; 4(2): 100482, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237599

RESUMO

The emergence of COVID-19 and severe acute respiratory syndrome (SARS) has prioritized understanding bats' viral tolerance. Myotis bats are exceptionally species rich and have evolved viral tolerance. They also exhibit swarming, a cryptic behavior where large, multi-species assemblages gather for mating, which has been hypothesized to promote interspecific hybridization. To resolve the coevolution of genome architecture and their unusual antiviral tolerance, we undertook a phylogenomic analysis of 60 Old World Myotis genomes. We demonstrate an extensive history of introgressive hybridization that has replaced the species phylogeny across 17%-93% of the genome except for pericentromeric regions of macrochromosomes. Introgression tracts were enriched on microchromosome regions containing key antiviral pathway genes overexpressed during viral challenge experiments. Together, these results suggest that the unusual Myotis karyotype may have evolved to selectively position immune-related genes in high recombining genomic regions prone to introgression of divergent alleles, including a diversity of interleukin loci responsible for the release of pro-inflammatory cytokines.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Genoma , Genômica , Cariótipo , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...